The case for a standardised CRS ontology

GeoLD Workshop 2024-05-26

Timo Homburg, Frans Knibbe2, Ghislain Atemezing, Nathalie Abadie and Luís Moreira de Sousa

Contents

- 1. Introduction
- 2. Definitions
- 3. Motivation
- 4. Related work
- 5. Benefits and Use Cases
- 6. Future Work

1. Introduction

Coordinate Reference Systems and the Semantic Web

- Coordinate Reference Systems (CRS)
 - the means to correctly interpret coordinates;
 - provide high precision positioning.
- Hundreds of CRSs have been created through history.
 - Many remain in use today
- **Gazetters** are the most common resource used in Linked Open Data (LOD).
 - Dictionaries of place names.
 - At best provide rough locations.
- No standard was ever issued for the provision and exchange of CRSs as Linked Data.

2. Definitions

Definitions (I)

- Spatial Reference System (SRS)
 - a system for establishing spatial position.
 - can use :
 - geographic identifiers (e.g. place names)
 - Identifiers with structured geometry (e.g. Discrete Global Grid System -DGGS)
 - coordinates (thus being a **Coordinate Reference System**).
- Coordinate System
 - a set of mathematical rules specifying coordinates are to be assigned to points.

Definitions (II)

- Datum:
 - a parameter, or set of parameters, defining:
 - position of the origin,
 - scale,
 - orientation.

Definitions (III)

- Coordinate Reference System (CRS):
 - is related to an object by a datum.
 - defines:
 - type of space in which coordinates are recorded
 - units of distance used
 - spatial and temporal <u>limits</u> to applicability
 - projection parameters
 - CRS registry:
 - a collection of CRS descriptions.

3. Motivation

Motivation

- A standardised CRS vocabolary for LOD is missing.
- A single CRS referenced in GeoSPARQL,
 - Often the only one supported by triple stores.
- Users largely on their own:
 - How to represent CRSs with RDF?
 - Where to record CRS definitions?
 - With which derreferencing mechanism?
 - How to interpret such definitions?

4. Related Work

OGC/ISO conceptual schema

- Framework for the description of CRS parameters
 - ISO 19111
 - OGC abstract specification "Referencing by coordinates"
- . Expressed in UML

٠

- Used in GML and Well-Known Text
- Guarantees interoperoberability
 - Should be considered by any additional CRS specifications/encodings.

ISO 19111 ontologies

- Set of ontologies <u>automatically derived</u> from XML schemas.
- Quality issues:
 - URIs do not have the right data type
 - Language tags for text literals are missing
 - Content negotiation is not supported
 - Separation in multiple ontologies seems unnecessary
 - UML constraints are not translated (to SHACL, for example)
 - Notes are not separate resources (and are not preceded by a space)
 - Not all terms have definitions
 - Blank nodes with an unclear meaning were generated
 - Existing applicable web ontologies are not used (e.g. OWL Time, GeoSPARQL)

CRS identifiers and registries

Registry	URI	RDF
EPSG Geodetic Parameter Registry		
• <u>EPSG.io</u>		
European Reference Coordinate System Service		
<u>SpatialReference.org</u>		
 French national mapping agency (IGN France) registry 		\bigotimes

IGN CRS ontology

- http://data.ign.fr/def/ignf/20160628.en.htm
- Extension to GeoSPARQL, based on ISO 19111.
- Re-uses existing ontologies (e.g. QUDT).
- ignf:CRS class.
- IGN's CRS registry published as RDF:
 - http://data.ign.fr/id/spargl
- URIs based on legal CRS names, e.g.:
 - http://data.ign.fr/id/ignf/crs/RGF93LAMB93

Proj4RDF

- https://github.com/situx/proj4rdf
- . Attempt to convert the EPSG database to RDF
- Extraction of CRS data from the PROJ library
- Mapping of CRS attributes to a **custom vocabulary**
- Attempt to infer a class structure and properties out of the implementation specifics
- Classes, where applicable, have been linked to the OGC standard for SRS
- Addition of more than 1000 spheroid definitions
- Addition of custom projection classes
- By no means perfect, should be considered a **working draft**
- Verification, standardisation and consultation by experts necessary

5. Benefits and Use Cases

Provision of CRS semantics on the Web

- 1 Provide human readable definitions of CRS elements directly from geometry instances.
- 2 Seamless link between geometries and CRS interpretation.
- 3 Enable reasoning on CRS elements.
- 4 Enable expression of custom CRSs.
- 5 CRS definitions usable by both humans and machines/algorithms.
- 6 Simply extensions to ISO 19111, e.g. extraterrestrial CRSs
- 7 CRS specifications used in metadata
- 8 CRS elements used in (federated) SPARQL queries
- 9 CRS recommendations based on dataset extent and/or coordinate precision

Publication of CRS registries

- 1 An official CRS registry in RDF can be published (e.g. by the OGC).
- 2 Data stores no longer need to replicate and update CRS parameters.
- 3 Well-known official URIs can be used to match CRSs in web searches and federated searches.
- 4 Official national grids can be published by national agencies.
- 5 Enable validation of coordinate data, e.g. via SHACL.
- 6 CRS specifications can be used in metadata standards, e.g. GeoDCAT-AP25.
- 7 Stand-alone systems can rely on the Web to remain up-to-date.
- 8 Provision of JSON-LD contexts for established JSON-based CRS schemes.

Complement to GeoSPARQL

- 1 A new property in the **Geometry** class can target instances in CRS registries.
- 2 Strenghtened definition of geometries:
 - Coordinates and CRSs defined natively in RDF.
- 3 (Federated) GeoSPARQL queries become feasible with geometries that use a custom CRS

Increased interoperability

- 1 Geographic geometry and other types of geometry can use the same CRS semantics.
- 2 Facilitate georeferencing with local CRSs.
- 3 Make coordinate transformations possible with Linked Data tools.
- 4 CRS semantics can be made available to knowledge domains outside of Geoinformatics,
 - e.g. in the cultural heritage domain.
- 5 Historical CRSs can be published using the same semantics as modern CRSs.

6. Future Work

Moving forwards

- An ontology framed by and compatible with existing standards
- Re-use of existing UML-base models
- A proof-of-concept