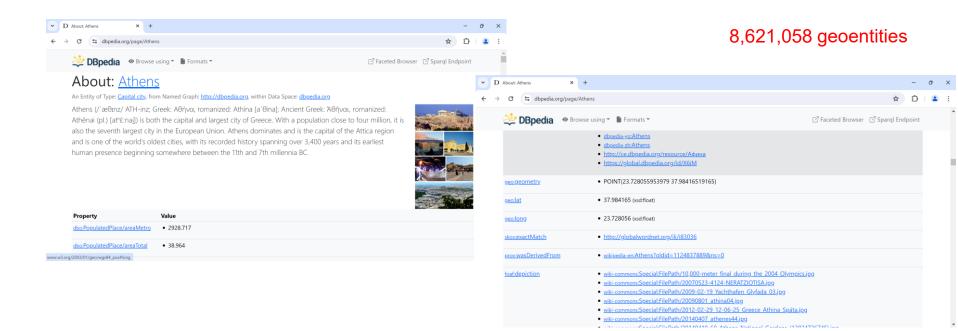


Recent advances in question answering for geospatial knowledge graphs

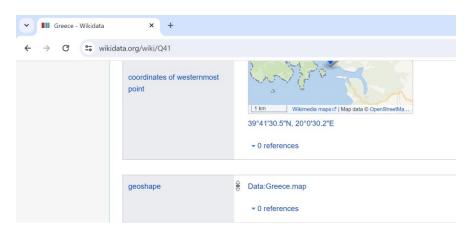
Manolis Koubarakis

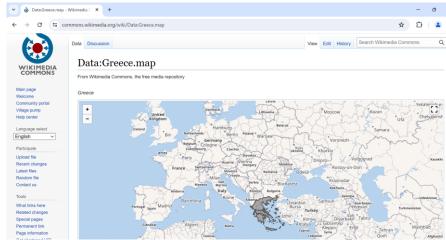
Dept. of Informatics and Telecommunications

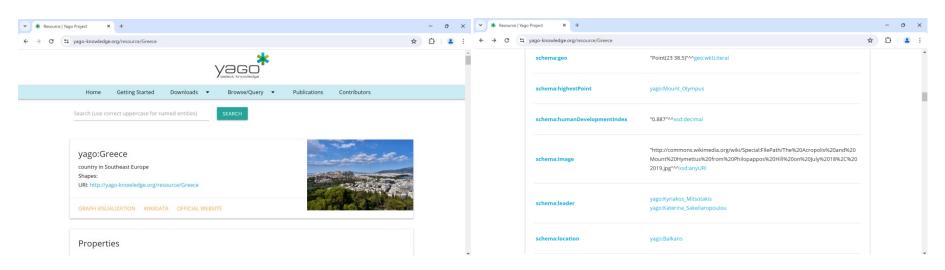

National and Kapodistrian University of Athens

GeoLD workshop @ ESWC May 26, 2024

Talk Outline


- Geospatial knowledge graphs
- Older question answering engines
- Recent question answering engines
 - The engine of Hamzei et al. (2022)
 - GeoQA2
 - EarthQA
 - GeoQAMap
 - GeoKBQA
- Benchmark datasets for evaluating question answering engines
 - GeoQuestions201
 - GeoQuestions1089
 - The dataset of Yang et al. (2024)
- Open problems


 DBpedia (lat/long coordinates, some cardinal directions, some topological relations implicitly)


8,621,058 geoentities

 Wikidata (same as DBpedia but also geoshapes). Geoshapes encode complex geometries e.g., multipolygons.

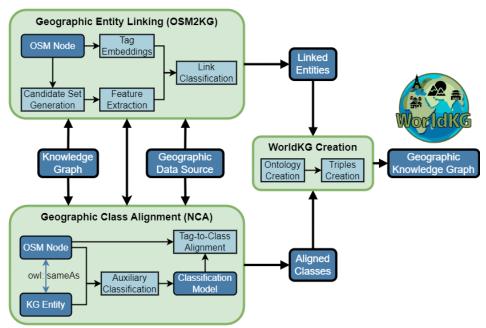
 YAGO2 (geoentities from Wikipedia and GeoNames, lat/long coordinates only, some topological relations implicitly)

 YAGO2geo (adds to YAGO2 more complex geometries from administrative geodata of Greece/UK/Ireland/USA, GADM and some OpenStreetMap features)

Polygons and multipolygons: 640,000

Linestrings: 137,000

Remissed


Sarring

Remissed

Remisse

Karalis et al. Extending the YAGO2 Knowledge Graph with Precise Geospatial Knowledge. ISWC 2019.

WorldKG (makes OpenStreetMap data available as a knowledge graph)

Dsouza, et al. WorldKG: A World-Scale Geographic Knowledge Graph. CIKM 2021.

Copyright @ 2022 Alishiba Dsouza, Nicolas Tempelmeier, Simon Gottschalk, Ran Yu, and Elena Demidova

WorldKG Statistics

Quantity	Count		
Total triples	828,550,751		
Total entities	113,444,975		
Top-level classes	<u>33</u>		
Sub-classes	1,143		
Unique properties	1,820		
Links to Wikidata classes	<u>40</u>		
Links to DBpedia classes	21		

Only points in the SPARQL endpoint currently.

1,224,403

In total, WorldKG covers 113,444,975 geographic entities, clearly more than Wikidata (8,621,058) and DBpedia (8,621,058).

- KnowWhereGraph (integrates thematic and place-centric datasets into a geospatial knowledge graph).
- Pilot scenarios in disaster relief, agricultural land use and food-related supply chains.

Multipolygons: 4,000 Polygons: 2.1 million Linestrings: 730,000

Points: 3.9 million

Janowicz et al. Know, Know Where, Knowwheregraph: A Densely Connected, Cross-Domain Knowledge Graph and Geo-Enrichment Service Stack for Applications in Environmental Intelligence. Al Mag. 43(1): 30-39 (2022)

Thematic Datasets					Place	e-Centric Data	sets
Dataset Name/ Theme	Source Agency	Key Attributes	Spatial Coverage	Temporal Coverage	Place-Centric Dataset	Defining Authority	Spatial Coverage
Soil Properties	USDA	soil type, farmland class	Targeted regions in US	Current	S2 Cells	Google	Lvl 9 (Global) Lvl 13 (US),
Wildfires	USGS, USDA, USFS, NIFC	wildfire type, burn severity, num. acres burned, contained date	US	1984-current	Global Administrative Regions	University of Berkeley, Museum of Vertebrate Zoology and the International Rice Research Institute	Global
Earthquakes	USGS	magnitude, length, width, geometry	Global (mag. over 4.5)	2011-01-01 to 2022-01-18			
Climate Hazards	NOAA	injuries, deaths, property damages	us	1950–2022			
Expert - Covid-19 Mobility	Direct Relief (DR)	name, affiliation, expertise	Global	2021	US Federal Judicial District	DoJ, ESRI	US
Expert - General	KWG, UC System, DR, Semantic Scholar	name, affiliation, expertise with spatiotemporal scopes	Global	unlimited	National Weather Zones	NOAA	US
Cropland Types	USDA	crop types (raster data)	US	2008-2021	FIPS Codes	NRCS	US
Air Qual. Obs.	U.S. EPA	AQI value, CO concentration	US	1980–2022	Designated Market Area	Nielen	US
Smoke Plumes	NOAA	daily smoke plumes extent	US	2010-2022	ZIP	ZCTA	US
Climate Observations	NOAA	temperature, precipitation, PDSI, PHSI	us	1950 - 2022	Climate Division	NOAA	US
Disaster Declaration	FEMA	designated area, program, amount approved, program designated date	US	1953 - 2022	Census Metropolitan Area	US Census	US
Smoke Plume Extents	NOAA	Smoke extent	us	2017 - 2022	Drought Zone	NDMC, USDA,NOAA	US
BlueSky Forecasts	Bluesky	PM10, PM5	US	2022-03-07	Geographic Name Information System	USGS	US
Transportation (highway network)	DOT	road type, road length, road sign	US	2014			
Public Health Observations	CDC, US Census, University of Wisconsin Population Health Institute	below poverty level, diabetes, obesity, mental health provider rate, annual mammogram, vaccinated, injury death	US	2017, 2021			
Public Health Infrastructure	HIFLD	pharmacies, hospitals, dialysis centers, public health departments	US	2017 - 2022			
Social Vulnerability	CDC/ATSDR	social vulnerability index	US	2018			
		max wind speed, min			I		

Older Geospatial Question Answering Engines

- Hybrid geo-spatial query methods on the semantic web with a spatially-enhanced index of DBpedia
 - Younis et al., 2012
- Template-based question answering over linked geospatial data (the engine GeoQA)
 - Punjani et al., 2018 and 2020
- Neural factoid geospatial question answering
 - Li et al., 2021

More Recent Geospatial Question Answering Engines

- The engine of Hamzei et al. (2022)
- GeoQA2
- EarthQA
- GeoQAMap
- GeoKBQA

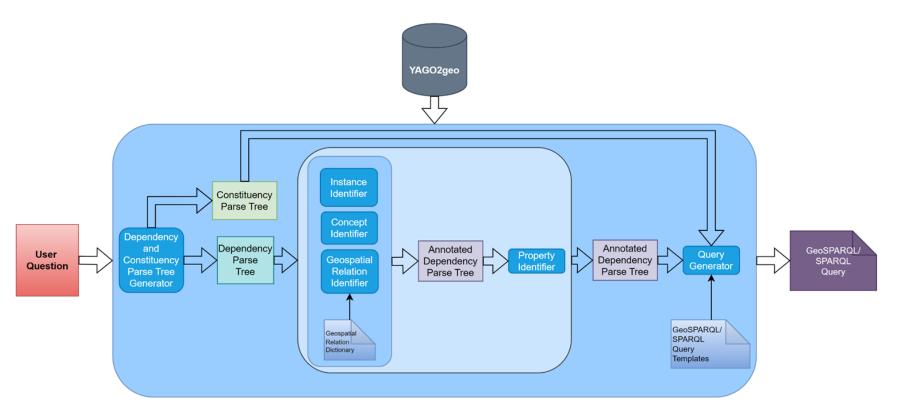
The engine of Hamzei et al. (2022)

- It has a comprehensive conceptual model
- It targets an extension of the YAGO2geo knowledge graph
- It is template-based

GeoSPARQL Queries GeoSPARQL Dynamic query Concept identification Ontology mapping generation Object-Based Conceptualisation of Place Place Properties Location Event Relations (Object) Logical representation Encoding Place Event Spatiotemporal Toponyms Events relationships types types Question Quality Situation Activity Properties Dates words Natural Natural Language Place-related questions language

Hamzei, et al. *Translating Place-Related Questions to GeoSPARQL Queries*. The Web Conference 2022.

GeoQA2 - Conceptual Model


 It is an extension and reengineering of GeoQA.

Question Represented By YAGO2geo Concepts ago:rive yago:County Essex yago:County Mayo yago:Ballyteige yago:London (yago:Chelmsford) Instances Geospatial Relations Borders Within Geospatial Thematic hasGeometry population countyCode **Properties Properties** yago:county_essex_geom Geometry asWKT sentation

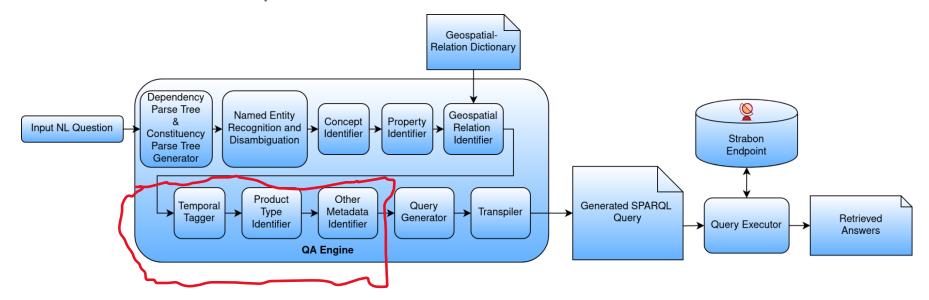
World

Punjani et al. *The Question Answering System GeoQA2*. GeoKG-GeoAl@GIScience 2023

GeoQA2 - Software Architecture

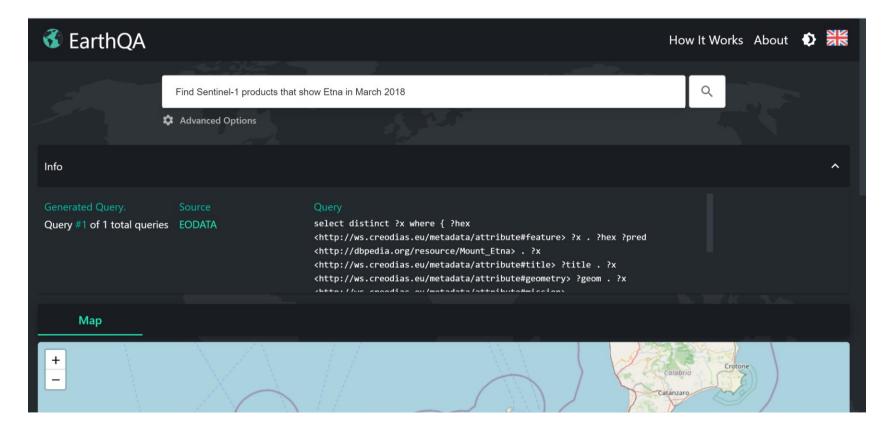
GeoQA2 - Example

- Which lakes are in counties that border with County Mayo?
 - Instances: yago:County_Mayo
 - Concepts: y2geoo:OSI_County, y2geoo:OSM_lake
 - Relations: geof:sfContains, geof:sfTouches
 - o <u>Properties</u>: -

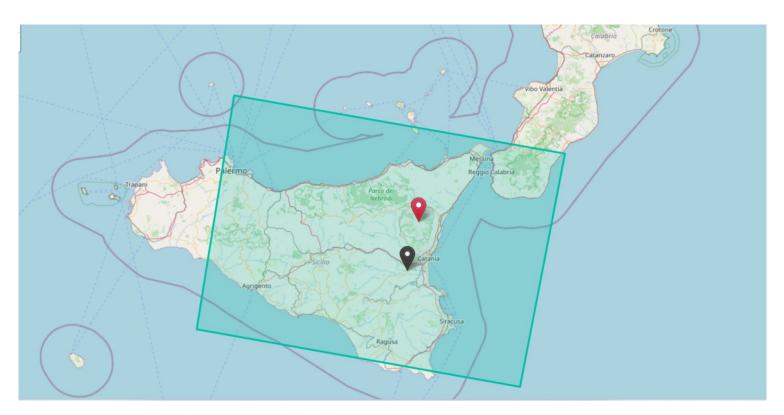


Generated GeoSPARQL Query

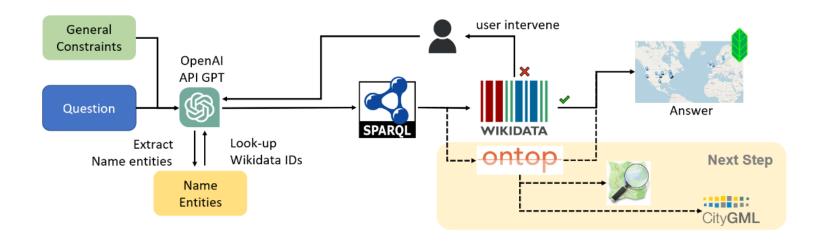
```
SELECT DISTINCT ?c17 WHERE {
   ?c17 a <a href="http://kr.di.uoa.gr/yago2geo/ontology/OSI">http://kr.di.uoa.gr/yago2geo/ontology/OSI</a> County>.
   ?c17 geo:hasGeometry ?cGeometry17.
   ?cGeometry17 geo:asWKT ?cWKT17.
   ?c6 a <a href="http://kr.di.uoa.gr/yago2geo/ontology/OSM">http://kr.di.uoa.gr/yago2geo/ontology/OSM</a> lake>.
   ?c6 geo:hasGeometry ?cGeometry6.
   ?cGeometry6 geo:asWKT ?cWKT6.
   <a href="http://yago-knowledge.org/resource/County">http://yago-knowledge.org/resource/County</a> Mayo> geo:hasGeometry ?iGeometry 1.
  ?iGeometry1 geo:asWKT ?iWKT1.
   FILTER (geof:sfTouches (?iWKT1, ?cWKT17))
   FILTER (geof:sfContains (?cWKT17, ?cWKT6))
```


EarthQA

- It is a question answering engine for Earth observation data archives.
- It has been developed as an extension of GeoQA2.

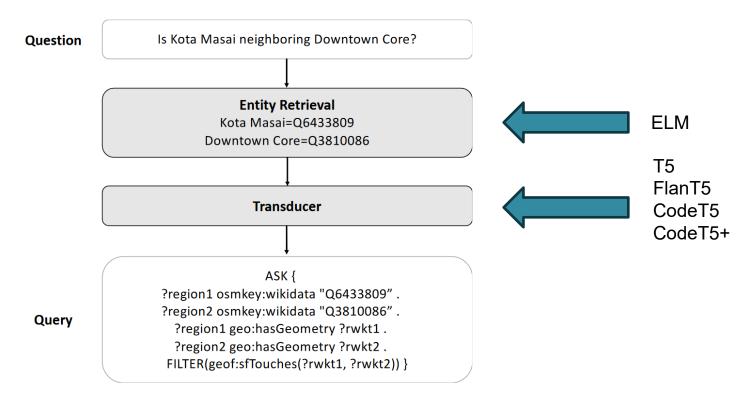


Punjani et al. EarthQA: A Question Answering Engine for Earth Observation Data Archives. IEEE IGARSS, 2023.


EarthQA in Operation

EarthQA in Operation

GeoQAMap



Feng et al. GeoQAMap - Geographic Question Answering with Maps. GIScience 2023.

Comments

- GeoQAMap is work in progress.
- The paper (Feng et al. 2023) discusses how to deal with questions of types C and F of the benchmark GeoQuestions1089 (details later).

GeoKBQA

Yang et al. Geographic Knowledge Base Question Answering over OpenStreetMap. ISPRS Int. Journal of Geo-information 2024.

Comments

- A benchmark dataset for evaluation geospatial question answering engines has been constructed (details later).
- GeoKBQA uses ELM for entity recognition and disambiguation and different versions of T5 for query generation.
- No comparison with other systems is being done.

Evaluating Geospatial Question Answering Engines

- I will discuss three benchmark datasets that have been used for the evaluation of the above geospatial question answering engines:
 - GeoQuestions201
 - GeoQuestions1089
 - The dataset of Yang et al. (2024)

GeoQuestions201

- GeoQuestions201 contains 201 question-query-answer triples
- Questions crowdsourced from students
- Target knowledge graph created by interlinking:
 - o DBpedia
 - OpenStreetMap (UK and Ireland)
 - Global Administrative Areas (UK and Ireland)
- Wide variety of questions
- Has been used as a gold standard to test the effectiveness of GeoQA, Li et al. (2021) and Hamzei et al. (2022).
- Available at https://geoga.di.uoa.gr/geospatial_gold_standard.html.

The GeoQuestions1089 dataset

- GeoQuestions1089 contains 1089 question-query-answer triples
- Questions crowdsourced from students
- Expanding on GeoQuestions201, in both complexity and scope
- Target knowledge graph:
 - o YAGO2
 - YAGO2geo (UK, Ireland, USA and Greece)
- Available at https://github.com/Al-team-UoA/GeoQuestions1089.

The questions of dataset GeoQuestions1089 fall under the following nine categories:

A. Asking for a thematic or a spatial attribute of a feature

- Where is Loch Goil located?
- What is the geometry of Loch Goil ?

B. Asking whether a feature is in a geospatial relation with another feature or features

- Is Liverpool east of Ireland?
- Is New York City in France?

C. Asking for features of a given class that are in a geospatial relation with another feature

- Which counties border county Lincolnshire?
- Which hotels are less than 2km from George Best Belfast City Airport?

D. Asking for features of a given class that are in a geospatial relation with any features of another class

Example:

Which churches are near castles?

E. Asking for features of a given class that are in a geospatial relation with unspecified features of another class, and either one or all, is/are in another geospatial relation with a feature specified explicitly

- Which churches are near a castle in Scotland?
- In Greece, which beaches are near villages?

F. As in categories C, D and E above, plus more thematic and/or geospatial attributes of the features expected as answers

Example:

Which mountains in Scotland are higher than 1000 meters?

G. Questions with **quantities** and **aggregates**

- What is the total area of lakes in Oxfordshire?
- How many lakes are there in Epirus?
- How many people live in villages in Attica?

H. Questions with **superlatives** or **comparatives**

- Which is the largest island in Greece?
- Is the largest island in France larger than Crete?

I. Questions with quantities/aggregates, and superlatives/comparatives

- Which city in the UK has the most hospitals?
- Is the total size of lakes in Greece larger than lake Loch Lomond in Scotland?

Comparison to GeoQuestions201

- GeoQuestions201:
 - mostly simple questions that can be answered with simple queries
- GeoQuestions1089
 - numerous complex questions that use more advanced SPARQL constructs to be answered
 - nested queries
 - Which is the 10th largest town in Alaska?
 - NOT EXISTS filters
 - Which islands don't have any lakes but have forests?
 - arithmetic calculations
 - How many times bigger is the Republic of Ireland than Northern Ireland?

Using the dataset to evaluate geospatial QA engines

 We used the dataset GeoQuestions1089 to benchmark the QA engines GeoQA2 and the system of Hamzei et al. (2022).

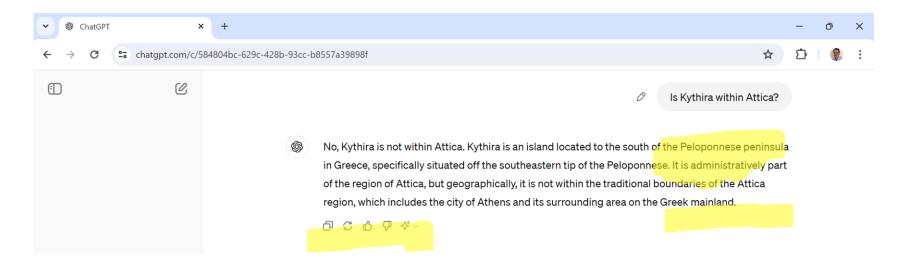
Evaluation: Methodology

- Methodology and Metrics:
 - The engines generate a query from a natural language question.
 - o If the generation is successful it is run against an RDF store.
 - The result is compared to the gold result included in GeoQuestions1089. For the generated query to be considered correct, the results must match exactly.

Evaluation: Results

Catagory	Hamzei et al.			GeoQA2		
Category	Generated	Correct	Correct	Generated	Correct	Correct
	Queries	Answers	Answers*	Queries	Answers	Answers*
Type-A	89.71%	10.85%	12.10%	84%	47.42%	56.45%
Type-B	95.68%	53.23%	55.63%	76.25%	58.99%	77.35%
Type-C	97.75%	30.33%	31.03%	79.21%	44.38%	56.02%
Type-D	100%	12%	12.00%	56%	12%	21.42%
Type-E	99.25%	7.40%	7.46%	80%	31.85%	39.81%
Type-F	79.16%	4.10%	5%	66.66%	16.66%	25%
Type-G	98.27%	11.49%	11.69%	74.13%	32.18%	43.41%
Type-H	97.18%	7.74%	7.97%	71.12%	26.05%	36.63%
Type-I	92%	0%	0.00%	84%	20%	23.80%
Total	95.77%	18.97%	19.81%	76.99%	38.54%	50.06%

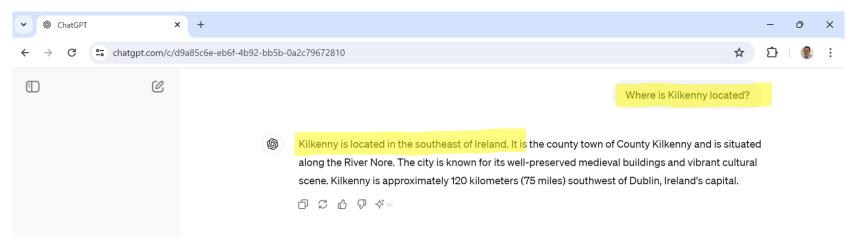
^{*} percentage of correct answers over the number of generated queries


Comments

- Consider the user question: "Where is Dublin located?"
- Questions:
 - Shall we include Dublin, Ireland?
 - Shall we include Dublin, Ohio?
 - Shall we include the Kingdom of Dublin? (https://en.wikipedia.org/wiki/Kingdom_of_Dublin)
- Answer by Hamzei et al.: Yes, and all the other Dublins that exist in the knowledge graph!
- Answer by GeoQA: only Dublin, Ireland should be included.

ChatGPT for GeoQuestions1089

• It is interesting to see whether chatbots such as ChatGPT, Gemini or Claude can answer correctly the questions of the benchmark GeoQuestions1089.


Examples

Category B question.

Correct answer.

Examples

Category A question.

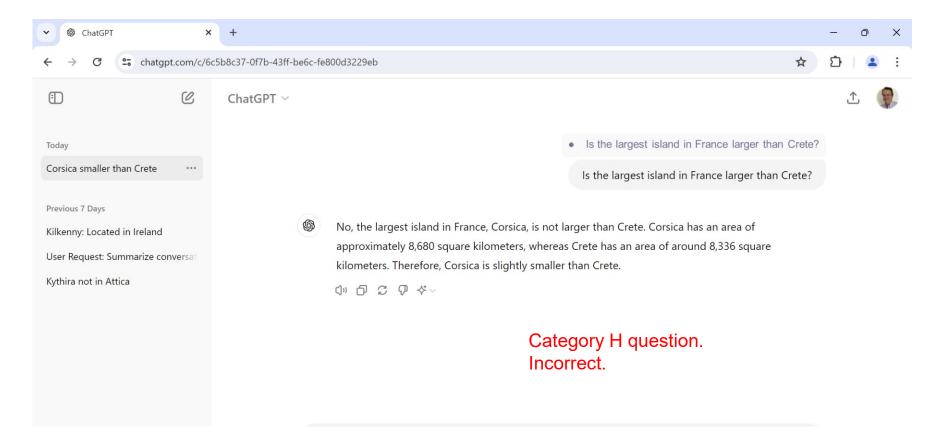
Partially correct answer. It would be nice to have the exact geometry of Kilkenny as well (this is what the benchmark has as answer).

Examples

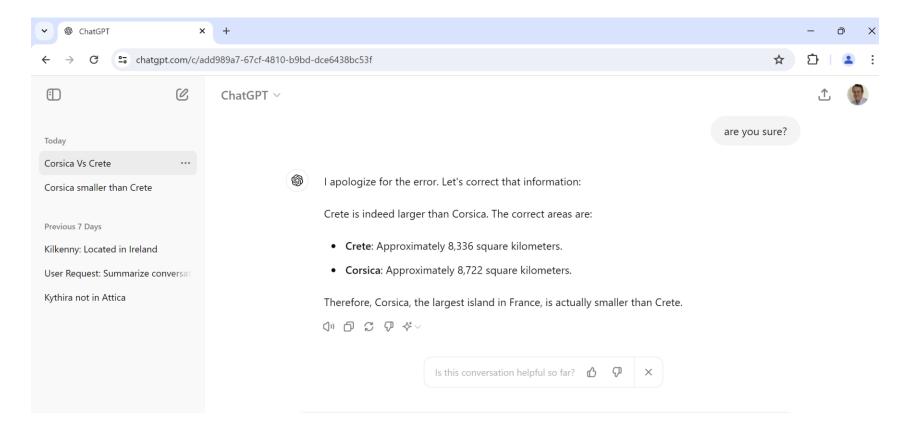
ChatGPT ~

How many lakes overlap with Greek municipalities?

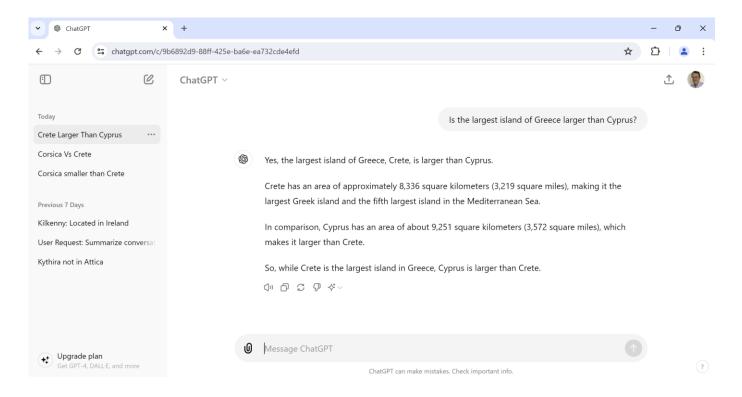
In Greece, there are several lakes that overlap with municipalities. Here are some of the notable examples:

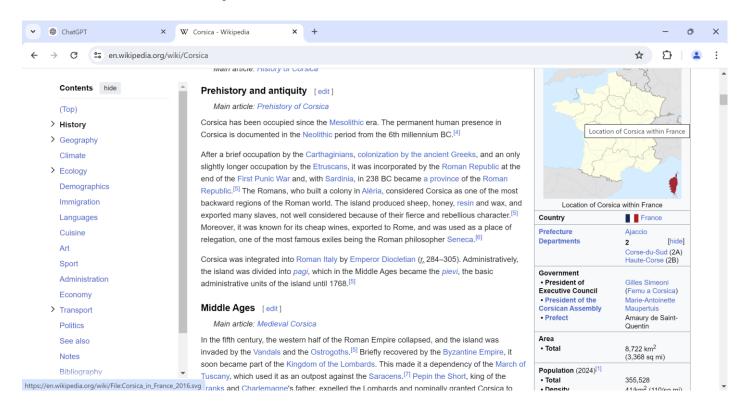

- Lake Trichonida This is the largest natural lake in Greece and it overlaps with the municipalities
 of Agrinio, Thermo, and Makryneia in the Aetolia-Acarnania regional unit.
- Lake Vegoritida This lake is situated in the northern part of Greece and overlaps with the
 municipalities of Amyntaio, Edessa, and Arnissa in the Florina and Pella regional units.
- Lake Prespa Located in the northwest, Lake Prespa overlaps with the municipalities of Prespes in the Florina regional unit and has shared borders with North Macedonia and Albania.
- Lake Volvi Found in the northern part of Greece, this lake overlaps with the municipalities of Volvi and Lagkadas in the Thessaloniki regional unit.
- Lake Pamvotida (loannina Lake) This lake is located in the Epirus region and overlaps with the municipality of loannina.
- 6. Lake Orestiada Situated in the northwest, this lake overlaps with the municipality of Kastoria.

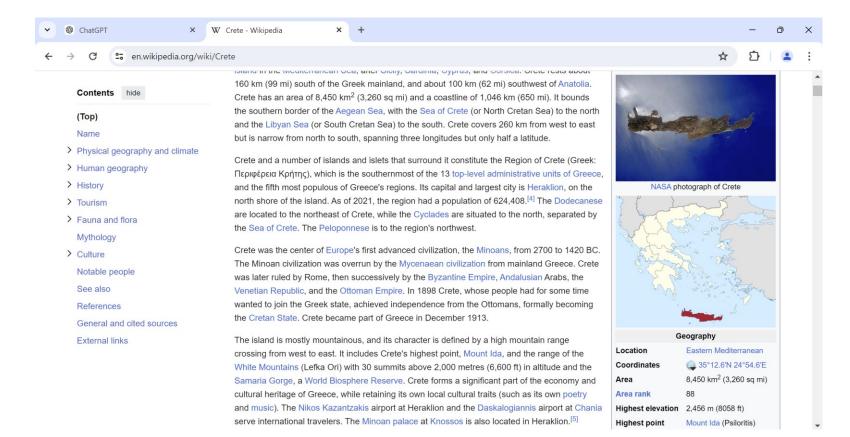
These examples demonstrate that several Greek lakes overlap with one or more municipalities, impacting local administration and often requiring cooperative management across municipal boundaries.

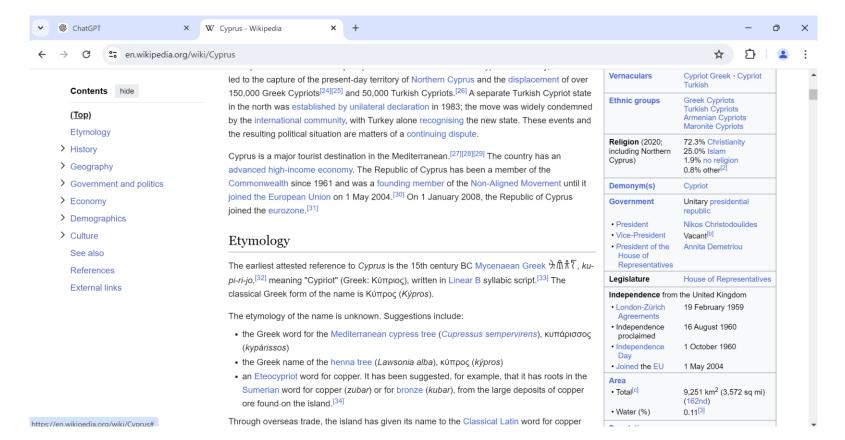

Category G question.

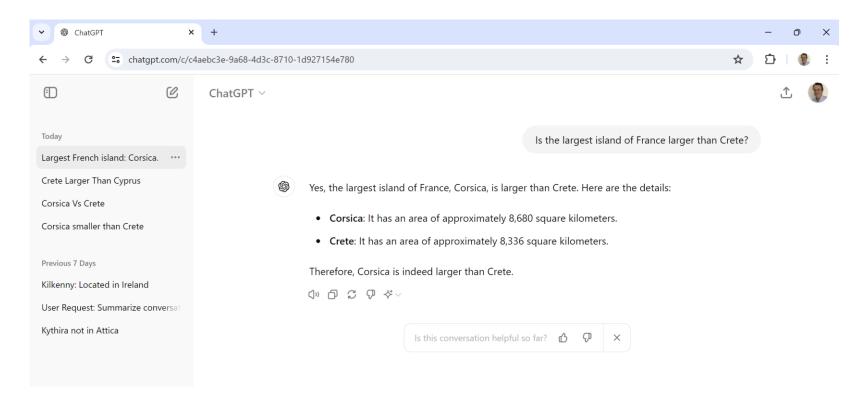
Incorrect answer.

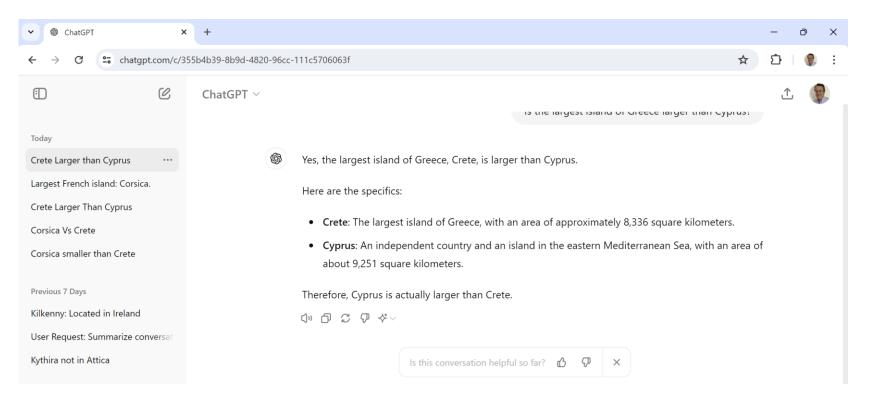

Example – Yesterday around Noon

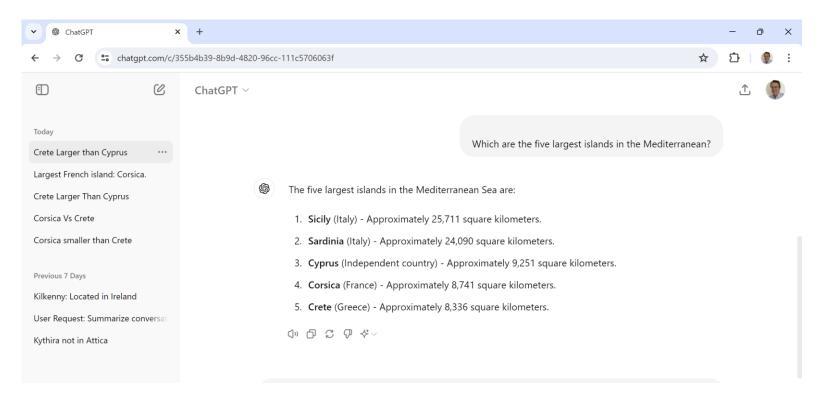

Example (cont'd)


Let's Try Another Example!

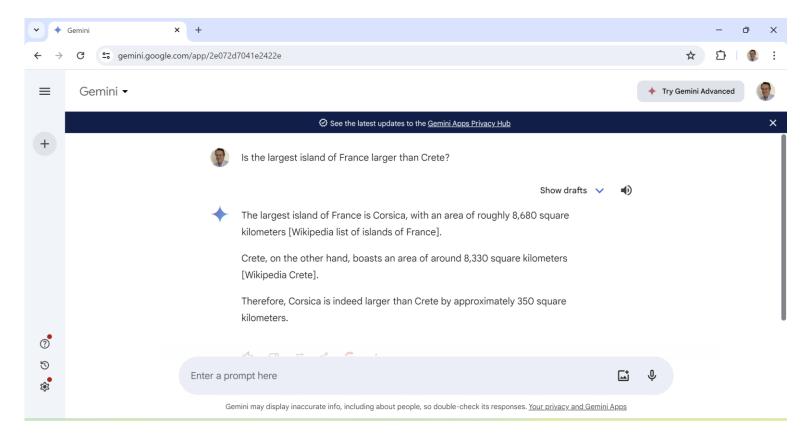

Let's Check Wikipedia

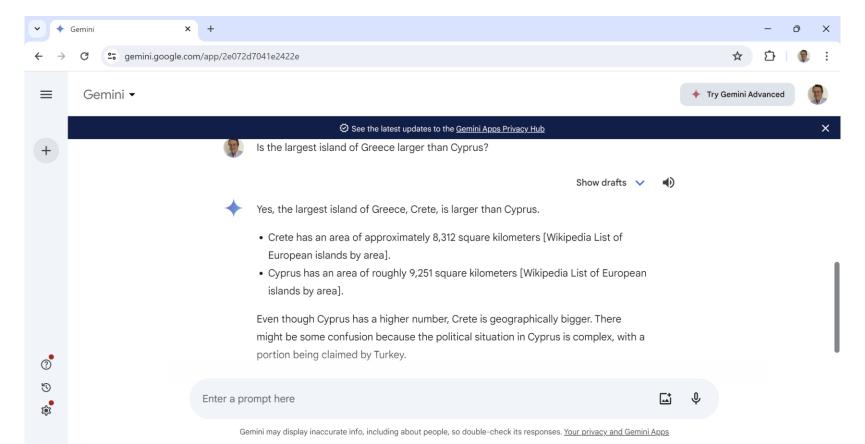

Let's Check Wikipedia


Let's Check Wikipedia


Example (cont'd) - 18:28 yesterday

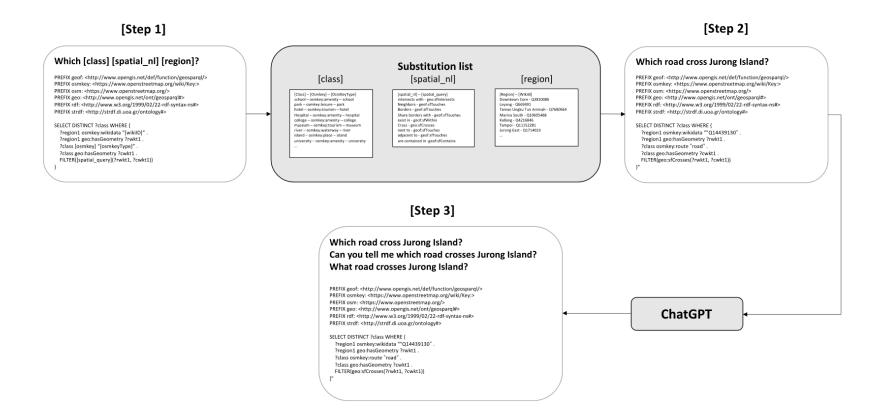
Example (cont'd) – 18:30 yesterday


In Case you are Wondering ©


Results

Category	Correctly Answered	Partially Correctly Answered	
Category A	15.4%	59.4%	
Category B	61.4%	0%	
Category C	31.3%	51.1%	
Category D	23.8%	52.4%	
Category E	18.8%	63%	
Category F	4%	8%	
Category G	6.3%	3.4%	
Category H	38.7%	0%	
Category I	4%	0%	
Total	22.6%	26.4%	

Let's Try Gemini!


Let's Try Gemini!

The Dataset of Yang et al. (2024)

- It was created as part of the GeoKBQA engine work.
- It starts from GeoQuestions1089 and:
 - Reorganizes the GeoQuestions1089 classes based on their corresponding GeoSPARQL queries to create templates that will be used for question generation.
 - Substitutes entities, classes, and spatial functions to augment the diversity of schema items and spatial functions, and to expand the scale of the dataset.
 - Paraphrases the resulting geospatial questions using ChatGPT (GPT-3.5 Turbo) to enhance natural language diversity.
 - Selects question—query pairs based on successful queries to the OpenStreetMap database, choosing pairs that yield results.
- 4468 question-query pairs are generated in this way.

Example

Results

• The dataset is used to evaluate GeoKBQA targeting OpenStreetMap data of Singapore. The results are the following:

	T5 Base Mo	odel (220M)	T5 Large Model (770M)		
	ELQ	Golden	ELQ	Golden	
T5	51.7857	71.6518	75.8929	79.0179	
FLAN-T5	62.2768	73.4375	78.5714	80.5804	
CodeT5	84.375	83.4821	91.5179	92.6339	
CodeT5+	93.3036	92.4107	93.0804	94.1964	

- Answering spatiotemporal questions over knowledge graphs
- Example: What are today the names and borders of the countries that made up Yugoslavia in 1991? Show the borders on a map.
- Question: are there spatiotemporal knowledge graphs (i.e., graphs that show the evolution of spatial regions over time)?
 - GeoChangeViz. See https://ceur-ws.org/Vol-3632/ISWC2023_paper_423.pdf

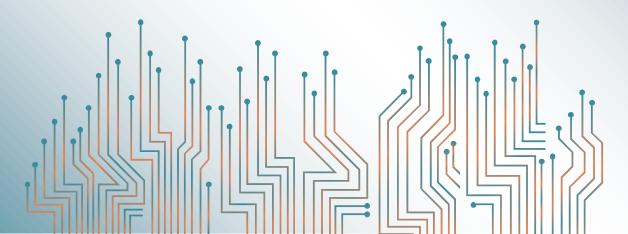
 Utilizing existing large language models in geospatial question answering engines (e.g., detect query intent, improve GeoSPARQL query generation etc.).

- Investigating whether current LLMs can do spatial reasoning
 - Cohn et al. (2023) https://arxiv.org/abs/2304.11164
 - Anthony Cohn (2023) https://arxiv.org/abs/2309.15577

- Developing foundation models for geodata and use them for toponym and location recognition and disambiguation, entity resolution, spatial reasoning, question answering etc.
 - Mai et al. (2023) https://arxiv.org/abs/2304.06798
 - Balsebre et al. (2024) https://arxiv.org/abs/2403.09059

Advertisement – European Summer School in Al 2024

- Takes place in Athens
- July 15 to 26, 2024 (2 weeks)
- 30 week-long courses
- 11 two hour long advanced tutorials
- EurAl travel grants covering registration are available
- Visit https://essai2024.di.uoa.gr/ for more!


Acknowledgement

 This work has been supported by Horizon Europe project STELAR (https://stelar-project.eu/) Grant No. 101070122.

Thank you!

Visit the web page of my group: https://ai.di.uoa.gr/
Follow us on twitter @AlTeamUoA, @mkoubarakis

