
Navigating the Earth with pure SPARQL

Damien Graux
Inria (France)

damien.graux@inria.fr

May 30th 2022GeoLD @ ESWC 2022

First, an example with
shipwrecks

2

Sunken boats

3

The wreck set can be modeled like so using RDF:

Declaring a wreck, having
:wreckId :type :wreck .

1. its Cartesian coordinates
:wreckId :abscissa "XXX" .
:wreckId :ordinate "YYY" .

2. the discovery year
:wreckId :foundIn "year" .

3. the associated C14 ratio
:wreckId :c14rate "ratio" .

4

Sunken boats

Typical wreck record
:wreckId :type :wreck .
:wreckId :abscissa "XXX" .
:wreckId :ordinate "YYY" .
:wreckId :foundIn "year" .
:wreckId :c14rate "ratio" .

Let’s consider the following conditions:
a. found in the last 10 years;
b. 100km around a specific position (Px,Py);
c. older than 1000 years.

5

Sunken boats

Typical wreck record
:wreckId :type :wreck .
:wreckId :abscissa "XXX" .
:wreckId :ordinate "YYY" .
:wreckId :foundIn "year" .
:wreckId :c14rate "ratio" .

Let’s consider the following conditions:
a. found in the last 10 years;
b. 100km around a specific position (Px,Py);
c. older than 1000 years.

Using SPARQL, to list all the wrecks

SELECT ?f WHERE {
?f :type :wreck .

}

6

Sunken boats

Typical wreck record
:wreckId :type :wreck .
:wreckId :abscissa "XXX" .
:wreckId :ordinate "YYY" .
:wreckId :foundIn "year" .
:wreckId :c14rate "ratio" .

Let’s consider the following conditions:
a. found in the last 10 years;
b. 100km around a specific position (Px,Py);
c. older than 1000 years.

Using SPARQL, to list all the wrecks with a.

SELECT ?f WHERE {
?f :type :wreck .
?f :foundIn ?Y .
FILTER((2022-?Y) <= 10)

}

7

Sunken boats

Typical wreck record
:wreckId :type :wreck .
:wreckId :abscissa "XXX" .
:wreckId :ordinate "YYY" .
:wreckId :foundIn "year" .
:wreckId :c14rate "ratio" .

Let’s consider the following conditions:
a. found in the last 10 years;
b. 100km around a specific position (Px,Py);
c. older than 1000 years.

Using SPARQL, to list all the wrecks with a, b.

SELECT ?f WHERE {
?f :type :wreck .
?f :foundIn ?Y .
FILTER((2022-?Y) <= 10)
?f :abscissa ?x . ?f :ordinate ?y .
FILTER(((?x-Px)*(?x-Px) +

 (?y-Py)*(?y-Py)) <= 100*100)
}

Using the formula d²=(∆x²+∆y²)

8

Sunken boats

Typical wreck record
:wreckId :type :wreck .
:wreckId :abscissa "XXX" .
:wreckId :ordinate "YYY" .
:wreckId :foundIn "year" .
:wreckId :c14rate "ratio" .

Let’s consider the following conditions:
a. found in the last 10 years;
b. 100km around a specific position (Px,Py);
c. older than 1000 years.

Dating the wrecks requires using the 14C-ratio,

in particular, the Carbon 14 has a half-life of 5700 years.

Problem: the formula involves a logarithm!

9

Sunken boats

Typical wreck record
:wreckId :type :wreck .
:wreckId :abscissa "XXX" .
:wreckId :ordinate "YYY" .
:wreckId :foundIn "year" .
:wreckId :c14rate "ratio" .

Let’s consider the following conditions:
a. found in the last 10 years;
b. 100km around a specific position (Px,Py);
c. older than 1000 years.

Dating the wrecks requires using the 14C-ratio,

in particular, the Carbon 14 has a half-life of 5700 years.

Problem: the formula involves a logarithm!

⇒ Approximating it thanks to a decomposition in series

10

Sunken boats

Typical wreck record
:wreckId :type :wreck .
:wreckId :abscissa "XXX" .
:wreckId :ordinate "YYY" .
:wreckId :foundIn "year" .
:wreckId :c14rate "ratio" .

Let’s consider the following conditions:
a. found in the last 10 years;
b. 100km around a specific position (Px,Py);
c. older than 1000 years.

Using SPARQL, to list all the wrecks with a, b and c.

SELECT ?f WHERE {
?f :type :wreck .
?f :foundIn ?Y .
FILTER((2022-?Y) <= 10)
?f :abscissa ?x . ?f :ordinate ?y .
FILTER(((?x-Px)*(?x-Px) +

 (?y-Py)*(?y-Py)) <= 100*100)
?f :c14rate ?rate .
BIND(((?rate-1)/(?rate+1)) AS ?z)
BIND((?z) AS ?t0)
BIND(((1/3)*(?z*?z*?z)) AS ?t1)
BIND(((1/5)*(?z*?z*?z*?z*?z)) AS ?t2)
BIND((2*(?t0 + ?t1 + ?t2)) AS ?LOG)
FILTER(5700*?LOG/(-0.693)<=1000)

}
Using bindings, and considering the series first three terms

11

Sunken boats

The previous example has been simplified for the sake of clarity,

1. The series approximation should indeed involve more terms.

2. Latitude and longitude coordinates are usually preferred.

For P1(lat1, lon1) and P2(lat2, lon2), the Haversine formula should be used:

⇒ The query designer would have to write multiple decompositions in series!

12

Sunken boats: …a simplified example

The previous example has been simplified for the sake of clarity,

1. The series approximation should indeed involve more terms.

2. Latitude and longitude coordinates are usually preferred.

For P1(lat1, lon1) and P2(lat2, lon2), the Haversine formula should be used:

⇒ The query designer would have to write multiple decompositions in series!

13

Focus of this study
On a planet

Earth surface geometry

14

Why are plane routes not straight lines on a map?

15

The Earth isn’t flat!

16

The Earth isn’t flat!

17

Great-circle (in blue):

the intersection of the sphere and a plane

that passes through the center point of the

sphere.

The Earth isn’t flat!

18

Great-circle (in blue):

the intersection of the sphere and a plane

that passes through the center point of the

sphere.

Rhumb line (in red):

an arc crossing all meridians of longitude at

the same angle, i.e. constant bearing.

How to set a route using
SPARQL 1.1?

19

Current literature approach
➢ Providing built-in functions, e.g.:

○ Virtuoso bif: <http://www.openlinksw.com/schemas/bif#>

○ GraphDB f: <http://www.ontotext.com/sparql/functions/>

○ Jena math: <http://www.w3.org/2005/xpath-functions/math#>

➢ Working group for next SPARQL version to add math functions in the standard

20

Current literature approach
➢ Providing built-in functions, e.g.:

○ Virtuoso bif: <http://www.openlinksw.com/schemas/bif#>

○ GraphDB f: <http://www.ontotext.com/sparql/functions/>

○ Jena math: <http://www.w3.org/2005/xpath-functions/math#>

➢ Working group for next SPARQL version to add math functions in the standard

Problems

● lack of interoperability between engines → with built-in functions

● complex for query writers
● impossibility to have complex math formulae

→ with manual writing

21

GeoSPARQL

22

PREFIX geosparql: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX uom: <http://www.opengis.net/def/uom/OGC/1.0/>

SELECT ?label ?lat ?long ?coordinates WHERE {
 ?x rdfs:label ?label ;
 geosparql:hasGeometry [geosparql:asWKT ?coordinates];
 geo:lat ?lat; geo:long ?long .

 BIND ("Point(0.1413499 45.1423348)"^^geosparql:wktLiteral

AS ?Currentposition)
 BIND (geof:distance(?coordinates, ?Currentposition, uom:metre)

AS ?distance)
}
ORDER BY ?distance LIMIT 1

How to set a route using
exclusively SPARQL 1.1?

23

24

25

http://www.w3.org/TR/sparql11-query/

http://www.w3.org/TR/sparql11-query/

26

http://www.w3.org/TR/sparql11-query/

SPARQL 1.1 adds the variable assignments:

- VALU
ES ?

x {
… }

- BIND
 (… AS

?y)

http://www.w3.org/TR/sparql11-query/

Using BIND to carry Earth constants

27

Useful variables.
BIND (xsd:double("3.14159265359") AS ?PI) # π with 11 digits.
BIND (xsd:double("6.28318530718") AS ?2PI) # 2π with 11 digits.
BIND (xsd:double("6371") AS ?E_radius) # Earth's radius, in km.

Using BIND to convert degrees to radians

28

Useful variables.
BIND (xsd:double("3.14159265359") AS ?PI) # π with 11 digits.
BIND (xsd:double("6.28318530718") AS ?2PI) # 2π with 11 digits.
BIND (xsd:double("6371") AS ?E_radius) # Earth's radius, in km.

Degrees to radians.
BIND ((xsd:double(?lat) * ?PI/180) AS ?lar)

Using BIND to compute e.g. intermediate results

29

Useful variables.
BIND (xsd:double("3.14159265359") AS ?PI) # π with 11 digits.
BIND (xsd:double("6.28318530718") AS ?2PI) # 2π with 11 digits.
BIND (xsd:double("6371") AS ?E_radius) # Earth's radius, in km.

Degrees to radians.
BIND ((xsd:double(?lat) * ?PI/180) AS ?lar)

Having two pairs of coordinates, below are the deltas in radians.
BIND (((xsd:double(?lat2)-xsd:double(?lat1)) * ?PI/180) AS ?dellar)
BIND (((xsd:double(?lon2)-xsd:double(?lon1)) * ?PI/180) AS ?dellor)

General Strategy

30

1. Set up usual constants;

2. Use bindings to express the mathematical expressions;

3. Approximate with series when trigonometric or exponential functions are

required;

4. Wrap binding sets into standalone blocs;

5. Make them available.

General Strategy

31

1. Set up usual constants;

2. Use bindings to express the mathematical expressions;

3. Approximate with series when trigonometric or exponential functions are

required;

4. Wrap binding sets into standalone blocs;

5. Make them available.
Relying and extending MINDS [1]

--
[1] Graux, Damien, et al. "MINDS: a translator to embed mathematical
expressions inside SPARQL queries." SEMANTiCS. Springer, Cham, 2020.

Extending MINDS to ease the query development

MINDS helps to write mathematical expressions in pure SPARQL:

● Translates mathematical expressions into a list of bindings;

● Obtained queries can be executed by any evaluator;

● Easing the query design with a python interface.

https://github.com/SmartDataAnalytics/minds

32

Extending MINDS to ease the query development

33

For instance, using an exponential function in a complex formula x²+e(y+3z)

Extending MINDS to ease the query development

34

For instance, using an exponential function in a complex formula x²+e(y+3z)

Considering the
5 first terms of:

Example: distance from the horizon to a crow’s nest

35

Example: distance from the horizon to a crow’s nest

36

Example: distance from the horizon to a crow’s nest

37

At a height h above the ground, the distance to
the horizon d, is given by:

d = √(2 ∗ R ∗ h/b)

with b = 0.8279 a factor for atmospheric
refraction.

Example: distance from the horizon to a crow’s nest

38

At a height h above the ground, the distance to
the horizon d, is given by:

d = √(2 ∗ R ∗ h/b)

with b = 0.8279 a factor for atmospheric
refraction.

BIND ("0.8279" AS ?b)
BIND ((2*xsd:double(?E_radius)*xsd:double(?h)/xsd:double(?b)) AS ?int)
BIND ((0+(1*(((?int)-1)/((?int)+1)))/1.0
+(1*(((?int)-1)/((?int)+1))*(((?int)-1)/((?int)+1))*(((?int)-1)/((?int)+1)))/3.0
+(1*(((?int)-1)/((?int)+1))*(((?int)-1)/((?int)+1))*
(((?int)-1)/((?int)+1))*(((?int)-1)/((?int)+1))*(((?int)-1)/((?int)+1)))/5.0
+(1*(((?int)-1)/((?int)+1))*(((?int)-1)/((?int)+1))*
(((?int)-1)/((?int)+1))*(((?int)-1)/((?int)+1))*(((?int)-1)/((?int)+1))*
(((?int)-1)/((?int)+1))*(((?int)-1)/((?int)+1)))/7.0
)AS ?sub1)
BIND ((0+(1)/1.0+(1*?sub1)/1.0+(1*?sub1*?sub1)/2.0 + (1*?sub1*?sub1*?sub1)/6.0)AS ?sub2)
BIND ((FLOOR((?sub2)*10000)/10000) AS ?distance)

Sharing the bindings

39

40

41

These correspond to the equirectangular projection!

42

These correspond to the equirectangular projection!

<https://github.com/dgraux/Navigating-with-SPARQL>

43

https://github.com/dgraux/Navigating-with-SPARQL

Conclusion

44

Navigating with SPARQL…
➢ … possible, but complicated! 😉

➢ Binding blocks are available:

<https://github.com/dgraux/Navigating-with-SPARQL>

➢ Results to be taken as a coding showcase

to show the potential of SPARQL 1.1

45GeoLD @ ESWC 2022 May 30th Thank you!

https://github.com/dgraux/Navigating-with-SPARQL

