
5th International Workshop on Geospatial Linked Data (GeoLD2022)
May 30, 2022, Heraklion, Crete, Greece

Institute of Informatics and Telecommunications, NCSR ”Demokritos”

Antonis Troumpoukis, Stasinos Konstantopoulos, and
Nefeli Prokopaki-Kostopoulou

A Geospatial Join Optimization for Federated
GeoSPARQL querying

Outline

• Background: Federated query processing
• Optimization of federated within-distance queries
• Evaluation (using a real-world use case)
• Conclusions and future work

Outline

• Background: Federated query processing
• Optimization of federated within-distance queries
• Evaluation (using a real-world use case)
• Conclusions and future work

4

• Federated query processors are systems that seamlessly
integrate data from multiple remote dataset servers

• receive a query, issue the necessary subqueries in the
remote servers, combine the intermediate results
accordingly, and presents the result to the client.

• used thoroughly in Linked Data; there exist many data
providers that publish their (thematic) datasets through
public SPARQL endpoints

• the technology is not yet mature for Geospatial Linked Data
and GeoSPARQL endpoints

Federated query processing

5

• GeoSPARQL specification:

o geospatial operations are denoted using functions
between geographic literals (e.g., geof:sfWithin,
geof:sfIntersects, geof:distance)

o geographic literals are denoted using WKT serializations
(e.g., “POINT(21.814 38.422)”^^geo:wktLiteral)

o features are linked with corresponding geographic literals
using geo:hasGeometry/geo:asWKT chains

Federated Geospatial Joins

SELECT * WHERE
{
 ?s1 geo:hasGeometry ?g1 .
 ?g1 geo:asWKT ?w1 .
 ?s2 geo:hasGeometry ?g2 .
 ?g2 geo:asWKT ?w2 .
 FILTER (geof:sfIntersects(?w1, ?w2))
}

• A geospatial join is a cross product filtered by a geospatial function.

• A federated geospatial join is a cross product filtered by a geospatial function comparing shapes
coming from different endpoints.

6

Federated Join Implementations

Federated Thematic Joins

• Many algorithms and implementations exist
(bind join, hash join, adaptive join, etc.)

• Bind Join!

o issue a query to the “left” endpoint, then pass
its results as bindings to the “right” endpoint.

o reduces the communication cost by reducing
intermediate results.

Federated Geospatial Joins

• No specialized algorithms for federated geospatial
joins exist

• Bind Join with a FILTER pushdown!

o fetch “left” shapes to partially bind the geospatial
function, then push the filter to the “right” endpoint

o exploits the fact that geospatial functions are
evaluated faster in the sources (spatial index).

7

Example

SELECT * WHERE
{
 # Hersonisos and its geometry
 ?s1 a dbo:Location .
 ?s1 dbp:name “Hersonisos” .
 ?s1 geo:hasGeometry ?g1 .
 ?g1 geo:asWKT ?w1 .

 # Hotels and their geometries
 ?s2 a acco:Hotel .
 ?s2 geo:hasGeometry ?g2 .
 ?g2 geo:asWKT ?w2 .

 # hotel is within Hersonisos
 FILTER (geof:sfWithin(?w2, ?w1))
}

SELECT * WHERE
{
 ?s1 a dbo:Location .
 ?s1 dbp:name “Hersonisos” .
 ?s1 geo:hasGeometry ?g1 .
 ?g1 geo:asWKT ?w1 .

}

SELECT * WHERE
{
 ?s2 a acco:Hotel .
 ?s2 geo:hasGeometry ?g2 .
 ?g2 geo:asWKT ?w2 .
 FILTER (
 geof:sfWithin(?w2, “WKT_OF_HERSONISOS”)
)
}

“Given 2 endpoints (administrative divisions, hotels), fetch all hotels within Hersonisos”

{ (?s1, “<http://...>”),
 (?g1, “<http://...>”),
 (?w1, “WKT_OF_HERSONISOS”) }

{...}, ..., {...}

Outline

• Background: Federated query processing
• Optimization of federated within-distance queries
• Evaluation (using a real-world use case)
• Conclusions and future work

9

Federated Within-Distance Queries

• We reduce focus on federated within-distance queries:

o shapes from different endpoints that their distance is less than d

o without requiring the exact distance

FILTER (geof:distance(?x, ?y, uom) < d).

• Problem: The evaluation such filters is computationally expensive:

o it cannot be answered from the spatial index.

o every shape is a potential match and its distance should be compared with
the threshold.

Example: The process of finding all
red shapes within distance d from
the given green shape, is slow. For
each shape we have to calculate the
distance from the given shape and
compare it with the threshold d.

10

Optimizing Federated Within-Distance Queries

• Solution: We augment the subquery to be issued to the “right-hand”
endpoint with an additional FILTER:
o keeps only shapes that do not intersect with a constructed rectangle

o used to prune all shapes that are “too-far away”

o can be answered from the spatial index of the source.

• We efficiently refine the set of candidate shapes before starting to
actually compute distances.

Example: To speed up the process
of finding all red shapes within
distance d from the given green
shape, we insert a condition that
filters out all shapes that do not
intersect with the blue rectangle.

11

Example

SELECT * WHERE
{
 # Hersonisos and its geometry
 ?s1 a dbo:Location .
 ?s1 dbp:name “Hersonisos” .
 ?s1 geo:hasGeometry ?g1 .
 ?g1 geo:asWKT ?w1 .

 # Hotels and their geometries
 ?s2 a acco:Hotel .
 ?s2 geo:hasGeometry ?g2 .
 ?g2 geo:asWKT ?w2 .

 # within 1 km distance
 FILTER (geof:distance(?w1, ?w2,
 uom:metre) < 1000).
}

SELECT * WHERE
{
 ?s1 a dbo:Location .
 ?s1 dbp:name “Hersonisos” .
 ?s1 geo:hasGeometry ?g1 .
 ?g1 geo:asWKT ?w1 .

}

SELECT * WHERE
{
 ?s2 a acco:Hotel .
 ?s2 geo:hasGeometry ?g2 .
 ?g2 geo:asWKT ?w2 .
 FILTER (geof:sfIntersects(?w2, “BUFBBOX”))
 FILTER (
 geof:distance(“WKT_OF_HERSONISOS”,
 ?w2, uom:metre) < 1000).
}

“Given 2 endpoints (administrative divisions, hotels), fetch all hotels within 1km distance from Hersonisos”

{ (?s1, “<http://.../>”),
 (?g1, “<http://.../>”),
 (?w1, “WKT_OF_HERSONISOS”) }

{...}, ..., {...}

BUFBBOX = MinBBox(Buffer(“WKT_OF_HERSONISOS”,
 1000, uom:metre))

12

Contributions

• Optimization technique
o We provide a pseudocode of our approach in the paper
o The actual algorithm is slightly more complex (designed to work with multiple bindings per query).

• Correctness proof
o We show that the additional FILTER does not change the semantics of the original query (it does

not prune any unwanted shapes)

• Implementation
o We provide an open source implementation of the technique
o The implementation is integrated within the Semagrow federation engine

Outline

• Background: Federated query processing
• Optimization of federated within-distance queries
• Evaluation (using a real-world use case)
• Conclusions and future work

14

Experimental Evaluation
Validating Crop type data using Ground Observations

• A federation with 2 GeoSPARQL endpoints:
o INVEKOS (field parcels, owners’ self declaration)
o LUCAS (Ground observations of crop type data)

• 14.1 million triples, ~4GB of data in N-triples format

• Task: Estimate the crop-type accuracy of the INVEKOS

Queries

Q1

given a ground observation,
return the closest field if it is
within 10 meters and the
crop types match

positive

Q2

given a ground observation
return the closest field if it is
within 10 meters and their
crop types do not match

negative

Q3
given a ground observation,
return it if there is no field
within 10 meters

irrelevant

15

Experimental Results
Crop-type data validation task

• We evaluate the full workload for the data
validation task.

• optimized is faster than naive by 2 orders
of magnitude.

• The queryset has several complex
characteristics, but the bottleneck is the
within-distance operation.

• Possible reason: the distance parameter is
quite small (10 meters).

#queries
in the

workload

naive optimized

query exec. time
(average per query)

query exec. time
(average per query)

Q1 2488 120 sec 2.6 sec

Q2 2488 119 sec 2.4 sec

Q3 2488 117 sec 1.8 sec

query exec. time
(total workload)

query exec. time
(total workload)

Q1-3 7494 10 days & 6 hours 4 hours & 39 min

16

Experimental Results (cont.)
Additional query

distance
naive optimized

query
exec. time

query
exec. time

shapes
pruned

Q4 10 m 58 sec 0.1 sec >99%

Q4 100 m 57 sec 0.1 sec >99%

Q4 1 km 58 sec 0.1 sec >99%

Q4 10 km 57 sec 1.2 sec 99%

Q4 50 km 72 sec 26 sec 84%

Q4 100 km 110 sec 86 sec 60%

• naive: ~1 min to calculate the result,
remaining time to fetch the result.

• optimized: smaller distance parameter →
higher amount of pruning → faster query
execution time. The additional filter does
not introduce any time overheads.

• huge time difference for distance ≤1km,
less pronounced for distance ≥50km.

Q4 return all fields within-distance D from a specific
ground observation (D = 10m-100km)

Outline

• Background: Federated query processing
• Optimization of federated within-distance queries
• Evaluation (using a real-world use case)
• Conclusions and future work

18

Conclusions

• We proposed an optimization for federated geospatial within-distance joins
o Augments the subqueries prepared for each source with additional filters that can be answered

from the spatial index of the federated sources.
o Does not change the semantics of the query
o Implemented within the Semagrow federation engine.

• We show in our evaluation that the optimization substantially speeds-up query execution
o we used datasets and queries from a practical use-case from the agro-environmental domain
o very effective, especially for small distance limits (2 orders of magnitude for 1km)
o can be useful for real-world applications (restrictions used to limit results to a local scope)

19

Future Work

• Develop a GeoSPARQL extension where within-distance is expressed with a single function.

• Develop similar rewriting techniques for optimizing queries with other GeoSPARQL functions.

Thank you!

Visit us at: https://github.com/semagrow/

The work described here has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 825258. For more details, please
visit http://earthanalytics.eu. The authors also acknowledge that the work was supported by
SKEL, NCSR ‘Demokritos’ https://www.iit.demokritos.gr/labs/skel/.

https://github.com/semagrow/
http://earthanalytics.eu
https://www.iit.demokritos.gr/labs/skel/

